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Luminita Pistol 1, Radu Bucea-Manea-Tonis2 1 Spiru Haret University 2 Hyperion University
Abstract. This paper aims to demonstrate the usefulness of formal logic and lambda calculus in
database programming. After a short introduction in propositional and first order logic, we
implement dynamically a small database and translate some SQL queries in filtered java 8

streams, enhanced with Tuples facilities from jOOA library.
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Introduction A database is a set of basic axioms corresponding to base relations and tuples plus
deductive axioms or inference rules. Tuples are for the relationships what are nouns for

sentences, each denote a true particular sentence [Date, 2005].

Alogical query is the action of evaluating a Boolean expression concerning tuples and relations.

Boolean operators in propositional logic are:
Table1: Boolean Operators

Operator name and meaning Example
negation (non) -@

conjunction (and) (¢ & y)

disjunction (or) (¢ | )

implication (if ..., then ...) (¢ -> W)
equivalence (if and only if. ) (p <-> W)

A basic axiom is equivalent to a tuple of a database or a predicate. The predicate value is a
function of truth that has a set of parameters. It should not be assigned a value to a database in

order to determine the database predicate to take the truth value FALSE [Date, 2005]
Table 2: Basic axiom table
Parent Child

Caninae Canis
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Canis Canis lupus

Corresponding to the exampe above, we can construct an open formula with two occurrences of

the variable x:
Grandparent(x) <- Parent (x) & ( Child(x) <-> Parent(y))

By placing an existential quantifier 3 before x (“for some x”) and an universal quantifier V before

y (“for all y”), we can bind these variables, as may be seen bellow [Bird, 2009]:

3x. Vy. Grandparent(x) <- Parent (x) & (Child(x) <-> Parent(y)) 1.1. Advantages of logical
querying:

Uniform representation of operations and dependency constraints;
Improved semantics of the original data model;

Improve SQL facilities making possible to negate a where clause if we keep in mind the formal

logic rules [StackOverflow, 2016,]:
A&B&(D|E)e~(A&B&(D|E))—~A|-B|(-D&-E)

Case study

Suppose that in our database the following schema has been defined [Moshe, 2006]:

Student (name, dorm, major, GPA), Professor (name, dept, salary, year hired) Chair (dept,

name) We create a dynamic structure for this as the following;:
Studenti = new ArrayList<Student>();

Profesori = new ArrayList<Professor>();

Decani = new ArrayList<Chair>();

Decani.add(new Chair("Iosipescu","Math"));

Decani.add(new Chair("Radulescu","CS"));
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Profesori.add(new Professor("Georgescu","CS",5000,1999));
Profesori.add(new Professor("Iosipescu”,"Math",3000,2004));
Profesori.add(new Professor("Radulescu”,"CS",7000,2000));
Profesori.add(new Professor("Marinescu","Math",6000,1998));
Studenti.add(new Student("Ionescu", "As", "CS", 9.5));
Studenti.add(new Student("Marinescu", "A3", "Math", 9.0));
Studenti.add(new Student("Popescu”, "A4", "CS", 8.5));
Studenti.add(new Student("Vasilescu", "A5", "Math", 7.5));

1.2. List the name and dorm of Math students with a GPA of at least 8.0:

List<Student> result = db.Studenti.stream().filter(s -> s.major.equals("Math") &
s.GPA>=8.0).collect(Collectors.toList());

1.3. List the names of faculty members with a salary of at most 5000 who were hired after 1990:

List<Professor> result1 = db.Profesori.stream().filter(p -> p.salary<=5000 &
p.year>=1990).collect(Collectors.toList());

1.4. List the names of faculty whose salary is higher than their chair’s salary:

db.Profesori.stream() .sorted((p1, p2) -> Long.compare(pi.salary, p2.salary)) .flatMap(vi -> 4
DB.DECANI.STREAM() .FILTER(V2 -> Objects.equals(vi.dept, v2.dept) &
db.Profesori.stream() .anyMatch(t -> 4 V1.SALARY>T.SALARY &

1.5. List the names of faculty members whose salary is highest in their department:

db.Profesori.stream().filter(p->db.Profesori.stream().anyMatch(t->t.salary<p.salary &
t.dept.equals(p.dept))).forEach(p->{System.out.println("name=" + p.name);});
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We have employed the jOOA library [GitHub, 2016], making the following mappings [Fusco,
2015]:

INNER JOIN - flatMap() with filter() WHERE - filter() GROUP BY - collect() HAVING - filter()
SELECT - map()

The results are the following:

name=Marinescu dorm=A3//1 name=Georgescu name=Iosipescu//2 (Marinescu, Iosipescu)//3

name=Radulescu name=Marinescu//4.

Conclusions There are advantages evaluating expressions and functional programming has
already given us the support for a declarative way of parsing collections of objects. Since
relational databases cease way to noSQL ones, we have to discover a good substitute for SQL
language. Beginning with Java 8 lambda expressions, streams and method references, we have

to search no more.
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