

(online) = ISSN 2285 – 3642

ISSN-L = 2285 – 3642

Journal of Economic Development, Environment and People

Volume 5, Issue 2, 2016

URL: http://jedep.spiruharet.ro

e-mail: office_jedep@spiruharet.ro

58

Logical Querying of Relational Databases

Luminita Pistol
1
, Radu Bucea-Manea-Tonis

2

1
 Spiru Haret University
2
 Hyperion University

Abstract. This paper aims to demonstrate the usefulness of formal logic and Lambda Calculus in database

programming. After a short introduction in propositional and first order logic, we implement dynamically a

small database and translate some SQL queries in filtered java 8 streams, enhanced with Tuples facilities

from jOOλ library.

Keywords: logic query, propositional logic, predicate, relational database

JEL Codes: M15

1. Introduction

A database is a set of basic axioms corresponding to base relations and tuples plus deductive axioms or

inference rules. Tuples are for the relationships what are nouns for sentences, each denote a true particular

sentence [Date, 2005].

A logical query is the action of evaluating a Boolean expression concerning tuples and relations.

Boolean operators in propositional logic are:

Table1: Boolean Operators

Operator name and meaning Example

negation (non) -φ

conjunction (and) (φ & ψ)

disjunction (or) (φ | ψ)

implication (if ..., then ...) (φ -> ψ)

equivalence (if and only if…) (φ <-> ψ)

(online) = ISSN 2285 – 3642

ISSN-L = 2285 – 3642

Journal of Economic Development, Environment and People

Volume 5, Issue 4, 2016

URL: http://jedep.spiruharet.ro

e-mail: office_jedep@spiruharet.ro

59

A basic axiom is equivalent to a tuple of a database or a predicate. The predicate value is a function of

truth that has a set of parameters. It should not be assigned a value to a database in order to determine the

database predicate to take the truth value FALSE [Date, 2005]

Table 2: Basic axiom table

Parent Child

Caninae Canis

Canis Canis lupus

Corresponding to the example above, we can construct an open formula with two occurrences of the

variable x:

Grandparent(x) <- Parent (x) & (Child(x) <-> Parent(y))

By placing an existential quantifier ∃ before x (“for some x”) and an universal quantifier ∀ before y

(“for all y”), we can bind these variables, as may be seen bellow [Bird, 2009]:

∃x. ∀y. Grandparent(x) <- Parent (x) & (Child(x) <-> Parent(y))

1.1. Advantages of logical querying:

• Uniform representation of operations and dependency constraints;

• Improved semantics of the original data model;

• Improve SQL facilities making possible to negate a where clause if we keep in mind the formal logic

rules [StackOverflow, 2016,]:

A & B & (D | E) ↔ ⌐ (A & B & (D | E)) ↔ ⌐A | ⌐B | (⌐D & ⌐E)

2. Case study

Suppose that in our database the following scheme has been defined [Moshe, 2006]:

Student (name, dorm, major, GPA),

(online) = ISSN 2285 – 3642

ISSN-L = 2285 – 3642

Journal of Economic Development, Environment and People

Volume 5, Issue 2, 2016

URL: http://jedep.spiruharet.ro

e-mail: office_jedep@spiruharet.ro

60

Professor (name, dept, salary, year hired)

Chair (dept, name)

We create a dynamic structure for this as the following:

Studenti = new ArrayList<Student>();

Profesori = new ArrayList<Professor>();

Decani = new ArrayList<Chair>();

Decani.add(new Chair("Iosipescu","Math"));

Decani.add(new Chair("Radulescu","CS"));

Profesori.add(new Professor("Georgescu","CS",5000,1999));

Profesori.add(new Professor("Iosipescu","Math",3000,2004));

Profesori.add(new Professor("Radulescu","CS",7000,2000));

Profesori.add(new Professor("Marinescu","Math",6000,1998));

Studenti.add(new Student("Ionescu", "A5", "CS", 9.5));

Studenti.add(new Student("Marinescu", "A3", "Math", 9.0));

Studenti.add(new Student("Popescu", "A4", "CS", 8.5));

Studenti.add(new Student("Vasilescu", "A5", "Math", 7.5));

2.1. List the name and dorm of Math students with a GPA of at least 8.0:

List<Student> result = db.Studenti.stream().filter(s -> s.major.equals("Math") &&

s.GPA>=8.0).collect(Collectors.toList());

2.2. List the names of faculty members with a salary to 5000, who were hired after 1990:

List<Professor> result1 = db.Profesori.stream().filter(p -> p.salary<=5000 &&

p.year>=1990).collect(Collectors.toList());

2.3. List the names of faculty whose salary is higher than their chair’s salary:

db.Profesori.stream()

.sorted((p1, p2) -> Long.compare(p1.salary, p2.salary))

.flatMap(v1 -> db.Decani.stream()

.filter(v2 -> Objects.equals(v1.dept, v2.dept) && db.Profesori.stream()

(online) = ISSN 2285 – 3642

ISSN-L = 2285 – 3642

Journal of Economic Development, Environment and People

Volume 5, Issue 4, 2016

URL: http://jedep.spiruharet.ro

e-mail: office_jedep@spiruharet.ro

61

.anyMatch(t -> v1.salary>t.salary && t.name.equals(v2.name)))

.map(v2 -> tuple(v1.name, v2.name)))

.forEach(System.out::println);

2.4. List the names of faculty members whose salary is highest in their department:

db.Profesori.stream().filter(p->db.Profesori.stream().anyMatch(t->t.salary<p.salary &&

t.dept.equals(p.dept))).forEach(p->{System.out.println("name=" + p.name);});

We have employed the jOOλ library [GitHub, 2016], making the following mappings [Fusco, 2015]:

INNER JOIN - flatMap() with filter()

WHERE - filter()

GROUP BY - collect()

HAVING - filter()

SELECT - map()

The results are the following:

name=Marinescu dorm=A3//1

name=Georgescu

name=Iosipescu//2

(Marinescu, Iosipescu)//3

name=Radulescu

name=Marinescu//4.

3. Conclusions

There are advantages. Evaluating expressions and functional programming has already given us the

support for a declarative way of parsing collections of objects. Since relational databases cease way to

noSQL ones, we have to discover a good substitute for SQL language. Beginning with Java 8 lambda

expressions, streams and method references, we have to search no more...

4. References

[1] C.J. Date, Baze de date, Editura Plus, 2005, ISBN:973-861-90-1-7

(online) = ISSN 2285 – 3642

ISSN-L = 2285 – 3642

Journal of Economic Development, Environment and People

Volume 5, Issue 2, 2016

URL: http://jedep.spiruharet.ro

e-mail: office_jedep@spiruharet.ro

62

[2] S Bird, E. Klein, E. Loper, Natural Language Processing With Python, Published by O’Reilly Media, Inc., 2005

Gravenstein Highway North, Sebastopol, CA 95472, 2009, ISBN: 978-0-596-51649-9

 http://victoria.lviv.ua/html/fl5/NaturalLanguageProcessingWithPython.pdf

[3] Moshe Y. Vardi, I. Barland, B. McMahan, Logic and Database Queries, August 31, 2006,

https://www.cs.rice.edu/~tlogic/Database/all-lectures.pdf

[4] GitHub, 2016, https://github.com/jOOQ/jOOL

[5] M. Fusco, Common SQL Clauses and Their Equivalents in Java 8 Streams, 1 Mar 2015,

https://blog.jooq.org/2015/08/13/common-sql-clauses-and-their-equivalents-in-java-8-streams/

[6] Stack Overflow, SQL WHERE condition, not equal to?, 2016 http://stackoverflow.com/questions/6156979/sql-

where-condition-not-equal-to

