Techno-economic study of BIPV in typical Sahara region in Algeria


  • Khadidja Khencha 1Tahri Mohamed Bechar University, ARCHIPEL Laboratory
  • Ratiba Wided Biara University Tahri Mohamed Bechar, Laboratory ARCHIPEL
  • Hocine Belmili Solar Equipment Development Unit, UDES, Renewable Energy Development Center, CDER, 42415 Tipaza, Algeria.



Keywords, BIPV, Energy Economy, Sahara region, energy efficiency, energy consumption.


Building in urban areas in the Sahara region is confronted with two main issues: (i) the climate change and (ii) the energy consumption. In order to deal with the latest issues, experts want to focus all their efforts on the use of renewable energy, and most particularly solar energy that is widely available at the Sahara. In this work, we have carried out a comprehensive survey related to benefits, techniques, and criteria affecting the energy efficiency of using BIPV and its advantages over glazing. To be clearer, we have selected as a case of study of a contemporary building covered by standard glazing and replaced by BIPV located in a Sahara region in Algeria. Moreover, the point of view of urban architectural, and energy economy, have been well investigated. Where the necessary time period was calculated to recover the total amounts of expenses for BIPV technology in the event that it is installed on the roof and then in the event that this technology is installed in the facades. As a result, using BIPV in this specific region of a hot climate has to be a dominant idea to reduce both energy consumption and economical 

Author Biographies

Ratiba Wided Biara, University Tahri Mohamed Bechar, Laboratory ARCHIPEL

University Tahri Mohamed Bechar, Laboratory ARCHIPEL

Hocine Belmili, Solar Equipment Development Unit, UDES, Renewable Energy Development Center, CDER, 42415 Tipaza, Algeria.

Solar Equipment Development Unit, UDES, Renewable Energy Development Center, CDER, 42415 Tipaza, Algeria.



Anon. s. d. « BP Energy Outlook | Energy Economics | BP ». Bp.Com. Consulté 10 septembre 2018a (

Anon. s. d. « Ministère de l’Énergie - Algérie - Potentiels des Energies renouvelables ». Consulté 20 juin 2019b (

Bedon, Chiara, Xihong Zhang, Filipe Santos, Dániel Honfi, Marcin Kozłowski, Michel Arrigoni, Lucia Figuli, et David Lange. 2018. « Performance of structural glass facades under extreme loads – Design methods, existing research, current issues and trends ». Construction and Building Materials 163:921‑37.

Bonomo, Pierluigi, Anatoli Chatzipanagi, et Francesco Frontini. 2015. « Overview and Analysis of Current BIPV Products: New Criteria for Supporting the Technological Transfer in the Building Sector ». VITRUVIO - International Journal of Architectural Technology and Sustainability 0(1):67‑85.

Delisle, Véronique et Michaël Kummert. 2016. « Cost-benefit analysis of integrating BIPV-T air systems into energy-efficient homes ». Solar Energy 136:385‑400.

Hestnes, Anne Grete. 1999. « Building Integration Of Solar Energy Systems ». Solar Energy 67(4):181‑87.

Jelle, Bjørn Petter. 2016. « Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways ». Energies 9(1):21.

Jelle, Bjørn Petter, Christer Breivik, et Hilde Drolsum Røkenes. 2012. « Building Integrated Photovoltaic Products: A State-of-the-Art Review and Future Research Opportunities ». 69-96.

Kamel, Raghad, Navid Ekrami, Peter Dash, Alan Fung, et Getu Hailu. 2015. « BIPV/T+ASHP: Technologies for NZEBs ». Energy Procedia 78:424‑29.

Lamy, Marie-Laure. 2004. « Efficacité des politiques environnementales d’incitation à l’adoption de nouvelles techniques: le cas des énergies renouvelables ». Thèse de doctorat, Université Pierre Mendès France, Grenoble, France.

Lewis, Nathan S. et Daniel G. Nocera. 2006. « Powering the Planet: Chemical Challenges in Solar Energy Utilization ». Proceedings of the National Academy of Sciences of the United States of America 103(43):15729‑35.

Muñoz, Yecid, Vargas Orlando, Pinilla Gustavo, et Vaquez Jairo. 2016. « Sizing and Study of the Energy Production of a Grid-Tied Photovoltaic System Using PV syst Software ». TECCIENCIA 12:27‑32.

Park, Jeeyoung, Dirk Hengevoss, et Stephen Wittkopf. 2019. « Industrial Data-Based Life Cycle Assessment of Architecturally Integrated Glass-Glass Photovoltaics ». Buildings 9(1):8.

Peng, Changhai, Ying Huang, et Zhishen Wu. 2011. « Building-Integrated Photovoltaics (BIPV) in Architectural Design in China ». Energy and Buildings 43(12):3592‑98.

Pierre, Fernandez et Lavign Pierre. 2009. Concevoir des bâtiments bioclimatiques -Fondements et méthodes-. 430e éd. paris: Le Moniteur.

Schuetze, Thorsten. 2013. « Integration of Photovoltaics in Buildings—Support Policies Addressing Technical and Formal Aspects ». Energies 6(6):2982‑3001.

Shalwala, R. A. et J. A. M. Bleijs. 2009. « Impact of Grid-Connected PV systems in residential areas in Saudi Arabia ». P. 1‑5 in 2009 44th International Universities Power Engineering Conference (UPEC).

Tian, Hao, Wei Zhang, Lingzhi Xie, Yupeng Wu, Yanyi Sun, Mo Chen, Wei Wang, et Xinwen Wu. 2018. « Study on the Energy Saving Potential for Semi-Transparent PV Window in Southwest China ». Energies 11(11):3239.

Wilson, Ronald et Alan Young. 1996. « The embodied energy payback period of photovoltaic installations applied to buildings in the U.K. » Building and Environment 31(4):299‑305.

Xu, Xiaolong, Guohui Feng, Dandan Chi, Ming Liu, et Baoyue Dou. 2018. « Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings ». Energies 11:3252.

Zhang, Tiantian, Meng Wang, et Hongxing Yang. 2018. « A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems ». Energies 11(11):3157.